Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Matthias Scheibitz,^a Hans-Wolfram Lerner^a and Michael Bolte^b*

^aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ^bInstitut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (N–C) = 0.008 Å Disorder in main residue R factor = 0.033 wR factor = 0.072 Data-to-parameter ratio = 21.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_4H_{12}N^+\cdot Br^-$, is a hydrolysis product of the 1-(dibromoboryl)ferrocene–dimethylethylamine (1/1) adduct. The metric symmetry is apparently orthorhombic *C*centred, but the intensity statistics indicate unambigously the correct Laue symmetry, *viz*. primitive monoclinic. The ethyl group is disordered over two sites. In addition to the hydrogen bond from the NH group to the Br⁻ ion, the packing is stabilized by several weak C–H···Br hydrogen bonds.

Dimethylethylammonium bromide

Received 13 January 2003 Accepted 22 January 2003 Online 31 January 2003

Comment

Recently, our group reported the properties and X-ray crystal structure determination of triferrocenylboroxine (Ma *et al.*, 2002). We report here the hydrolysis of the 1-(dibromoboryl)ferrocene–dimethylethylamine (1/1) adduct and the X-ray crystal structure analysis of the resulting dimethylethyl-ammonium bromide, [HNEtMe₂]Br. The synthesis of triferrocenylboroxine and of the title compound, (I), was achieved by the hydrolysis of the 1-(dibromoboryl)ferrocene–dimethylethylammonium (1/1) adduct, as indicated in the reaction scheme below.

There is a strong hydrogen bond linking the NH group and the Br^- ion. Furthermore, the packing is stabilized by several weak $C-H \cdots Br$ hydrogen bonds.

Experimental

The title compound, (I), was obtained by stirring a solution of 0.107 g 1-(dibromoboryl)ferrocene–dimethylethylamine (1/1) in 10 ml CH₂Cl₂ in the presence of 0.05 ml H₂O at ambient temperature. The solution was subjected to gas-phase diffusion of diethyl ether, to yield colourless crystals of [HNEtMe₂]Br. The NMR spectra were recorded on a Bruker AM 250 spectrometer. [HNEtMe₂]Br: ¹H NMR (CDCl₃, internal TMS): δ 1.45 (*t*, CH₃, ³*J* = 7.2 Hz), 2.78 (*d*, 2NCH₃, ³*J* = 5.3 Hz), 3.14 (*dq*, NCH₂, ³*J* = 7.2 Hz, ³*J* = 5.3 Hz), 11.26 (*m*, NH). ¹³C[¹H] NMR (CDCl₃, internal TMS): δ 10.0 (*s*, CH₃), 42.6 (*s*, 2 NCH₃), 53.3 (*s*, NCH₂).

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

 $\begin{array}{l} C_4 H_{12} N^+ \cdot Br^- \\ M_r = 154.06 \\ \text{Monoclinic, } P2_1/c \\ a = 7.0797 \ (8) \ \text{\AA} \\ b = 7.3352 \ (9) \ \text{\AA} \\ c = 14.1594 \ (15) \ \text{\AA} \\ \beta = 100.030 \ (9)^\circ \\ V = 724.07 \ (14) \ \text{\AA}^3 \\ Z = 4 \end{array}$

Data collection

Stoe IPDS-II two-circle diffractometer ω scans Absorption correction: multi-scan (*MULABS*; Spek, 1990; Blessing, 1995) $T_{\rm min} = 0.381, T_{\rm max} = 0.485$ 5255 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.072$ S = 0.851675 reflections 78 parameters

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N1-H1···Br1	0.85 (6)	2.37 (6)	3.217 (3)	173 (5)
$C2-H2A\cdots Br1^{i}$	0.98	2.90	3.819 (5)	156
$C1-H1A\cdots Br1^{ii}$	0.98	2.88	3.849 (4)	171
$C2-H2B\cdots Br1^{iii}$	0.98	3.03	3.913 (5)	151
$C2-H2C\cdots Br1^{iv}$	0.98	3.05	3.931 (5)	150
$C1-H1C\cdots Br1^{iii}$	0.98	3.00	3.895 (5)	152
Symmetry codes: (i) -	$-x, y - \frac{1}{2}, \frac{1}{2} - z;$	(ii) $1 - x, 1 - y,$	1 - z; (iii) $-x, 1$	-y, 1-z; (iv)

x, y - 1, z.

The initial cell determination yielded an orthorhombic *C*-centred cell with a = 18.197 Å, b = 21.698 Å, c = 7.335 Å and V = 2896.1 Å³. After data collection, the R_{int} value for the orthorhombic setting (0.474) indicated that the symmetry should be lowered to monoclinic *P* with an R_{int} of 0.063. Structure solution and refinement was

 $D_x = 1.413 \text{ Mg m}^{-3}$ Mo K\$\alpha\$ radiation Cell parameters from 1423 reflections \$\theta\$ = 3.5-24.2° \$\mu\$ = 5.57 mm^{-1}\$ T = 173 (2) K Block, colourless 0.19 \times 0.17 \times 0.13 mm

1675 independent reflections 1171 reflections with $I > 2\sigma(I)$ $R_{int} = 0.063$ $\theta_{max} = 27.8^{\circ}$ $h = -9 \rightarrow 9$ $k = -8 \rightarrow 9$ $l = -18 \rightarrow 18$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.032P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.029$ $\Delta\rho_{max} = 0.32 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.56 \text{ e } \text{\AA}^{-3}$

Figure 1

Perspective view of the title compound with the atom numbering; displacement ellipsoids are drawn at the 50% probability level. The major component of the disordered ethyl group (C3 and C4) is drawn with full bonds, the minor component (C3' and C4') with open bonds.

successful in $P2_1/c$. The ethyl group is disorded over two sites. The site-occupation factors refined to 0.54 (1):0.46 (1). H atoms bonded to C atoms were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C) \text{ or } 1.5U_{eq}(C_{methyl})]$, using a riding model, with C-H = 0.99 Å and methyl C-H = 0.98 Å. The H atom bonded to the N atom was freely refined.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Ma, K., Lerner, H.-W., Scholz, S., Bats, J., Bolte, M. & Wagner, M. (2002). J. Organomet. Chem. 664, 94–105.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

- Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1990). Acta Cryst. A46, C-34.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.